Application of auto-regressive (AR) analysis to improve short-term prediction of water levels in the Yangtze estuary
2020
Chen, Yongping | Gan, Min | Pan, Shunqi | Pan, Haidong | Zhu, Xian | Tao, Zhengjin
Due to the complex interaction between the fluvial and tidal dynamics, estuarine tides are less predictable than ocean tides. Although the non-stationary tidal harmonic analysis (NS_TIDE) model can account for the influence of the river discharge, the predictive accuracy of the water levels in the tide-affected estuaries is yet to be improved. The results from recent studies using the NS_TIDE model in the lower reach of the Yangtze estuary showed the best root-mean-square-error (RMSE) between the predicted and measured water levels being in a range of 0.22 ~ 0.26 m. From the spectral analysis of the predictive errors, it was also found that the inaccurate description of tides in the sub-tidal frequency band was the main cause. This study is to develop a hybrid model in combination of the auto-regressive (AR) analysis and the NS_TIDE model in an attempt to further improve short-term (with time scale of days) water level predictions in the tide-affected estuaries. The results of the application of the hybrid model in the Yangtze estuary show a significant improvement for water level predictions in the estuary with the RMSE of 24 h prediction being reduced to 0.10 ~ 0.13 m.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library