Conformational inversion-topomerization processes of ethylcyclohexane and 1,2-dimethylcyclohexane: A computational investigation
2019
Bian, Huiting | Ye, Lili | Zhong, Wei | Sun, Jinhua
To deeply reveal the impact of the substituents and their special orientations in ring on conformational behaviors for substituted cyclohexanes, a comprehensive study of ethylcyclohexane, cis-, and trans-1,2-dimethylcyclohexanes has been carried out. All conformational structures for them were captured by the accurate ab intio method, that is, B3LYP/6-311++G(d,p) method was used for geometry optimizations, and MP2/6-311++G(d,p), G4, and CCSD(T)/6-311++G(d,p) methods were applied for the high-level single point energy refinements. Based on CCSD(T)/6-311++G(d,p) quantum results, the conformational populations of minima for these three substituted cyclohexanes were calculated by Boltzmann distribution over 300-2500 K. Additionally, the conformational inversion-topomerization pathways for them were thoroughly investigated. The complete characterization involved in their potential energy surfaces are clearly presented by three or two-dimensional schemes.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library