Purification and Biochemical Characterization of Indole-3-acetyl-aspartic Acid Synthetase from Immature Seeds of Pea (Pisum sativum)
2011
Ostrowski, Maciej | Jakubowska, Anna
Indole-3-acetic acid (IAA) amidosynthetases catalyzing the ATP-dependent conjugation of IAA and amino acids play an important role in the maintenance of auxin homeostasis in plant cells. A new amidosynthetase, indole-3-acetic acid:l-aspartic acid ligase (IAA-Asp synthetase) involved in IAA-amino acid biosynthesis, was isolated via a biochemical approach from immature seeds of the pea (Pisum sativum L). The enzyme was purified to homogeneity by a three-step procedure, involving PEG 6000 fractionation, DEAE-Sephacel anion-exchange chromatography, and preparative PAGE, and characterized as a 70-kDa monomeric protein by analytical gel filtration and SDS-PAGE. Rabbit antiserum against recombinant AtGH3.5 cross-reacted with the pea IAA-Asp synthetase, and a single immunoreactive polypeptide band was observed at 70 kDa. The purified enzyme had an apparent isoelectric point at pH 4.7, the highest activity at pH 8.2, preferred Mg²⁺ as a cofactor, and was strongly activated by reducing agents. Similar to known recombinant GH3 enzymes, an IAA-Asp synthetase from pea catalyzes the conjugation of phytohormone acyl substrates to amino acids. The enzyme had the highest synthesizing activity on IAA, followed by 1-NAA, SA, 2,4-D, and IBA, whereas activities on l-Trp, IPA, PAA, (±)JA, and 2-NAA were not significant or not detected. Of 14 amino acids tested, the enzyme had the highest activity on Asp and lower activity on Ala and Lys. Glutamate was found to be a very poor substrate and no conjugating activity was observed on the rest of the amino acids. Steady-state kinetic analysis indicated that IAA and aspartate were preferred substrates for the pea IAA-Asp synthetase. The enzyme exhibited both higher affinities for IAA and Asp (K m = 0.2 and 2.5 mM, respectively) and catalytic efficiencies (k cat/K m = 682,608.7 and 5080 s⁻¹ M⁻¹, respectively) compared with other auxins and amino acids examined. This study describes the first amidosynthetase isolated and purified from plant tissue and provides the foundation for future genetic approaches to explain the role of IAA-Asp in Pisum sativum physiology.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library