ROS and metabolomics-mediated autophagy in rat's testicular tissue alter after exercise training; Evidence for exercise intensity and outcomes
2021
Akbar Gharehbagh, Samaneh | Tolouei Azar, Javad | Razi, Mazdak
Oxidative damage and altered metabolic reactions are suspected to initiate the autophagy. The exercise training significantly impacts testicular antioxidant and metabolic potentials. However, the underlying mechanism(s) that the exercise-induced alterations can affect the autophagy markers remained unknown. This study explored the effect of exercise training on antioxidant and metabolic statuses of testicular tissue and uncovered the possible cross-link between these statuses and autophagy-inducers expression. Wistar rats were divided into sedentary control, low (LICT), moderate (MICT), and high (HICT) intensity continuous training groups. Following 8 weeks of training, the testicular total antioxidant capacity (TAC), total oxidant status (TOS), glutathione (GSH), and NADP⁺/NADPH as oxidative biomarkers along with intracytoplasmic carbohydrate and lipid droplet patterns, lactate dehydrogenase (LDH) activity, and lactate as metabolic elements were assessed. Finally, the autophagy-inducers expression and sperm count were examined. With no significant impact on the oxidative biomarkers and metabolic elements, the LICT and MICT groups exhibited statistically unremarkable (p < 0.05) impacts on spermatogenesis differentiation, spermiogenesis ratio, and sperm count while increased the autophagy-inducers expression. Reversely, the HICT group, simultaneous with suppressing the antioxidant biomarkers (TAC↓, GSH↓, TOS↑, NADP⁺/NADPH↑), significantly (p < 0.05) reduced the testicular LDH activity and lactate level, changed the intracytoplasmic carbohydrate and lipid droplet's pattern, and amplified the classical autophagy-inducers p62, Beclin-1, autophagy-related gene (ATG)-7, and light chain 3 (LC3)-II/I expression. The autophagy-inducers overexpression has occurred after HICT induction, most probably to eliminate the oxidative damage cargoes, while increased to maintain the metabolic homeostasis in the LICT and MICT groups.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library