Development of novel antibacterial agents against methicillin-resistant Staphylococcus aureus
2012
Chiu, Hao-Chieh | Lee, Su-Lin | Kapuriya, Naval | Wang, Dasheng | Chen, Yi-Ru | Yu, Sung-Liang | Kulp, Samuel K. | Teng, Lee-Jene | Chen, Ching-Shih
Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious threat to public health because of its resistance to multiple antibiotics most commonly used to treat infection. In this study, we report the unique ability of the cyclooxygenase-2 (COX-2) inhibitor celecoxib to kill Staphylococcus aureus and MRSA with modest potency. We hypothesize that the anti-Staphylococcus activity of celecoxib could be pharmacologically exploited to develop novel anti-MRSA agents with a distinct mechanism. Examination of an in-house, celecoxib-based focused compound library in conjunction with structural modifications led to the identification of compound 46 as the lead agent with high antibacterial potency against a panel of Staphylococcus pathogens and different strains of MRSA. Moreover, this killing effect is bacteria-specific, as human cancer cells are resistant to 46. In addition, a single intraperitoneal administration of compound 46 at 30mg/kg improved the survival of MRSA-infected C57BL/6 mice. In light of its high potency in eradicating MRSA in vitro and its in vivo activity, compound 46 and its analogues warrant continued preclinical development as a potential therapeutic intervention against MRSA.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library