Population consequences of diapause in a model system: the European corn borer
1989
Ellsworth, P.C. | Umeozor, O.C. | Kennedy, G.G. | Bradley, J.R. Jr | Duyn, J.W.
The diapause biology of the European corn borer (ECB), Ostrinia nubilalis (Hübn.), is described based on natural and controlled environment studies of feral and lab-reared ECB's in North Carolina (NC). The diapause response is described as a function of photophase (h of light/day) as well as a function of larval age (instar) at onset of diapause-inducing conditions. A critical photophase of 14.4 h and a critical mean larval instar of 3.3 is found in the lab studies and supported by three years of insectary studies. Seven years of black light trapping of ECB moths in Goldsboro, NC, revealed the likelihood of up to four moth flights/year. Information about the diapause biology of this insect is used to explain both the number of flights and the relative magnitude of the final moth flights. On average, the majority of ECB lineages pass through three generations/year with early maturing ECB's producing a significant and predictable fourth generation. The timing and magnitude of the fourth flight can be partly explained on the basis of the critical photophase and the timing and age structure of previous ECB generations. In most years, the fourth flight is smaller than the third due to the majority of the fourth generation's predisposition towards diapause. However, in at least one case (1977), the fourth flight was unusually large and could be predicted by slight temporal shifts in the previous three flights resulting in the majority of the fourth generation larvae averting diapause. The value of the ECB-diapause interaction as a model system for the explanation and prediction of dynamic phenological events is discussed.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library