A carnation anthocyanin mutant is complemented by the glutathione S-transferases encoded by maize Bz2 and petunia An9
2003
Larsen, E.S. | Alfenito, M.R. | Briggs, W.R. | Walbot, V.
Particle bombardment was used to elucidate the function of Flavonoid3, a late-acting anthocyanin gene of the ornamental plant, carnation (Dianthus caryophyllus L.). The fl3 mutation conditions dilute anthocyanin coloration that closely resembles phenotypes produced by the anthocyanin mutants bz2 of maize and an9 of petunia. Bz2 and An9 encode glutathione S-transferases (GSTs) involved in vacuolar sequestration of anthocyanins. Constructs containing either of these or another late-function maize gene, Bronze1 (UDPglucose:flavonol 3-O-glucosyltransferase), were introduced via microprojectile bombardment into fl3 petals. Complementation resulted only from Bz2 and An9, indicating that Fl3 encodes a GST involved in the transport of anthocyanins to the vacuole. The observed result in carnation, an angiosperm phylogenetically distant from maize and petunia, indicates that GST activity might be a universal step in the anthocyanin pathway. Microprojectile bombardment was used to identify late-pathway anthocyanin mutations, which may be responsible for the pale anthocyanin coloration of important cultivars in many species but which can be difficult to characterize by other means.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library