Poly(4-vinylaniline)-Polyaniline Bilayer-Modified Stainless Steels for the Mitigation of Biocorrosion by Sulfate-Reducing Bacteria (SRB) in Seawater
2012
Yuan, Shaojun | Tang, Shengwei | Lv, Li | Liang, Bin | Choong, Cleo | Pehkonen, Simo Olavi
A novel strategy by combination of surface-initiated atom transfer radical polymerization (ATRP) and in situ chemical oxidative graft polymerization was employed to tether stainless steel (SS) with poly(4-vinylaniline)-polyaniline (PVAn-PANI) bilayer coatings for mitigating biocorrosion by sulfate-reducing bacteria (SRB) in seawater. A trichlorosilane coupling agent was first immobilized on the SS surfaces to provide sulfonyl halide groups for surface-initiated ATRP of 4-VAn. A subsequent grafting of PANI onto the PVAn-grafted surface was accomplished by in situ chemical oxidative graft polymerization of aniline. The PVAn-PANI bilayer coatings were finally quaternized by hexylbromide to generate biocidal functionality. The so-synthesized SS surface was found to significantly reduce bacterial adhesion and biofilm formation. Electrochemical results revealed that the PVAn-PANI modified SS surface exhibited high resistance to biocorrosion by SRB. With the inherent anticorrosion capability and antibacterial properties of quaternized PVAn-PANI bilayers, the functionalized SS substrates are potentially useful to steel-based equipment under harsh marine environments.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library