Co-expression of a NADPH:P450 reductase enhances CYP71A10-dependent phenylurea metabolism in tobacco
2003
Siminszky, Balazs | Freytag, Ann M. | Sheldon, Bonnie S. | Dewey, Ralph E.
A soybean cytochrome P450 monooxygenase, designated CYP71A10, catalyzes the oxidative N-demethylation or ring methyl hydroxylation of a variety of phenylurea herbicides. The ectopic expression of CYP71A10 in tobacco was previously shown to be an effective means of enhancing whole plant tolerance to the compounds linuron and chlortoluron. Because P450 enzymes require ancillary proteins to catalyze the transfer of electrons from NADPH to the functional heme group of the P450, it is possible that the endogenous levels of these companion proteins may be insufficient to support the optimal activation of a highly expressed recombinant P450. In the present report, we have generated transgenic tobacco that simultaneously express CYP71A10 and a soybean P450 reductase. Transformed plants that express both CYP71A10 and the P450 reductase demonstrated 20–23% higher metabolic activity against phenylurea herbicides than control plants expressing CYP71A10 alone. These results suggest that herbicide tolerance strategies based on the expression of P450 genes may require concomitant expression of a cognate electron transport partner to fully exploit the herbicide metabolic capacity of the P450.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library