Bases of yield and production efficiency in apple orchard systems
1991
Robinson, T.L. | Lakso, A.N.
Bases of orchard productivity were evaluated in four 10-year-old apple orchard systems ('Empire' and 'Redchief Delicious' Malus domestica Borkh. on slender spindle/M.9, Y-trellis/M.26, central leader/M.9/MM.111, and central leader/M.7a). Trunk cross-sectional areas (TCA), canopy dimension and volume, and light interception were measured. Canopy dimension and canopy volume were found to be relatively poor estimators of orchard light interception or yield, especially for the restricted canopy of the Y-trellis. TCA was correlated to both percentage of photosynthetically active radiation (PAR) intercepted and yields. Total light interception during the 7th to the 10th years showed the best correlation with yields of the different systems and explained most of the yield variations among systems. Average light interception was highest with the Y-trellis/M.26 system of both cultivars and approached 70% of available PAR with 'Empire'. The higher light interception of this system was the result of canopy architecture that allowed the tree canopy to grow over the tractor alleys. The central leader/M.7a had the lowest light interception with both cultivars. The efficiency of converting light energy into fruit (conversion efficiency = fruit yield/light intercepted) was significantly higher for the Y-trellis/M.26 system than for the slender spindle/M.9 or central leader/ central leader/M.9/MM.111 systems. The central leader/M.7a system had the lowest conversion efficiency. An index of partitioning was calculated as the kilograms of fruit per square centimeter increase in TCA. The slender spindle/M.9 system had significantly higher partitioning index than the Y-trellis/M.26 or central leader/M.9/MM.111. The central leader/M.7a system had the lowest partitioning index. The higher conversion efficiency of the Y/M.26 system was not due to increased partitioning to the fruit; however, the basis for the greater efficiency is unknown. The poor conversion efficiency of the central leader/M.7a was mostly due to low partitioning to the fruit. The Y-trellis/M.26 system was found to be the most efficient in both intercepting PAR and converting that energy into fruit.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library