Development of a filtration-based SERS mapping platform for specific screening of Salmonella enterica serovar Enteritidis
2019
Gao, Siyue | He, Lili
The presence of Salmonella in natural freshwater and drinking water is a leading cause of intestinal illness all over the world; thus, the detection of Salmonella in water is of great importance to public health. The objective of this study is to develop a rapid screening method for the detection of Salmonella enterica serovar Enteritidis in water involving surface-enhanced Raman spectroscopy (SERS), aptamers, and filtration. SERS offers a great alternative to traditional methods of pathogen detection, with a simplified detection assay and shortened detection time. The specific capturing and labeling of Salmonella Enteritidis are realized by a specific single-stranded DNA aptamer, which is modified with an additional chain of adenine and fluorescein (FAM) and used as presence/absence indicator of Salmonella Enteritidis. By incorporating a vacuum filtration system, bacterial cells recognized by the specific aptamer are concentrated onto a membrane. With additional filtration of gold nanoparticles, the aptamer signals were captured and used to construct a SERS mapping indicating the presence and absence of target bacterial strains with potential quantitative capability. The specificity of the method was validated by using other strains of bacteria such as Escherichia coli and Listeria monocytogenes. The sensitivity of the method goes down to 10³ CFU/mL for 1 mL of sample with a total detection and analyzing time within 3 h. This study demonstrates the capability of the filtration-based SERS platform for detecting Salmonella Enteritidis in various aqueous matrices such as distilled water and rinsing water from fresh produce with high selectivity and sensitivity. Graphical abstract
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library