Low-current electro-oxidation enhanced the biodegradation of the recalcitrant naphthenic acids in oil sands process water
2020
Abdalrhman, Abdallatif Satti | Zhang, Yanyan | Arslan, Muhammad | Gamal El-Din, Mohamed
Combining electro-oxidation (EO) with biodegradation for real oil sands process water (OSPW) treatment was evaluated in terms of naphthenic acid (NA) biodegradation enhancement. Ion mobility spectrometry (IMS) qualitative analysis showed that EO by graphite was able to degrade the different NA clusters in OSPW including: classical, oxidized and heteroatomic NAs. Applying EO even at current density as low as 0.2 mA/cm² was still able to reduce classical NAs and acid extractable fraction (AEF) by 19% and 7%, respectively. EO pretreatment preferentially broke long carbon chains and highly cyclic carboxylic fractions of NAs in OSPW to improve the biodegradation of NAs. Aerobic biodegradation for 40 days reduced NAs by up to 30.9% when the samples were pre-treated with EO. Applying EO at current densities below 2 mA/cm² maintained current efficiency as high as 48% and resulted in improvement in the biodegradation rate of remaining NAs by up to 2.7 folds. It was further revealed that applying EO before biodegradation could reduce the biodegradation half-life of classical NAs by up to 4.4 folds. 16S amplicon sequencing analysis showed that the samples subjected to biodegradation had increased abundances of Sphingomonadales and Rhodocyclales with increasing applied current density for EO pre-treatments.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library