Studies on Nonenzymatic Oxidation Mechanisms in Neobetanin, Betanin, and Decarboxylated Betanins
2013
Wybraniec, Sławomir | Starzak, Karolina | Skopińska, Anna | Nemzer, Boris | Pietrzkowski, Zbigniew | Michałowski, Tadeusz
A comprehensive nonenzymatic oxidation mechanism in betanin plant pigment as well as its derivatives, 2-decarboxybetanin, 17-decarboxybetanin, 2,17-bidecarboxybetanin, and neobetanin, in the presence of ABTS cation radicals was investigated by LC-DAD-ESI-MS/MS. The main compounds formed during the first step of betanin and 2-decarboxybetanin oxidation are 2-decarboxy-2,3-dehydrobetanin and 2-decarboxyneobetanin, respectively. In contrast to betanin, the reaction mechanism for 2-decarboxybetanin includes more oxidation pathways. Parallel transformation of 2-decarboxybetanin quinone methide produces neoderivatives according to an alternative reaction that omits the presumably more stabile intermediate 2-decarboxy-2,3-dehydrobetanin. The main oxidation product after the first reaction step for both 17-decarboxybetanin and 2,17-bidecarboxybetanin is 2,17-decarboxy-2,3-dehydrobetanin. This product is formed through irreversible decarboxylation of the 17-decarboxybetanin quinone methide or by oxidation of 2,17-bidecarboxybetanin. Oxidation of neobetanin results primarily in a formation of 2-decarboxy-2,3-dehydroneobetanin by a decarboxylative transformation of the formed neobetanin quinone methide. The elucidated reaction scheme will be useful in interpretation of redox activities of betalains in biological tissues and food preparations.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library