Simulation of sonic waves along a borehole in a heterogeneous formation: Accelerating 2.5-D finite differences using [Py]OpenCL
2013
Iturrarán-Viveros, Ursula | Molero, Miguel
This paper presents an implementation of a 2.5-D finite-difference (FD) code to model acoustic full waveform monopole logging in cylindrical coordinates accelerated by using the new parallel computing devices (PCDs). For that purpose we use the industry open standard Open Computing Language (OpenCL) and an open-source toolkit called PyOpenCL. The advantage of OpenCL over similar languages is that it allows one to program a CPU (central processing unit) a GPU (graphics processing unit), or multiple GPUs and their interaction among them and with the CPU, or host device. We describe the code and give a performance test in terms of speed using six different computing devices under different operating systems. A maximum speedup factor over 34.2, using the GPU is attained when compared with the execution of the same program in parallel using a CPU quad-core. Furthermore, the results obtained with the finite differences are validated using the discrete wavenumber method (DWN) achieving a good agreement. To provide the Geoscience and the Petroleum Science communities with an open tool for numerical simulation of full waveform sonic logs that runs on the PCDs, the full implementation of the 2.5-D finite difference with PyOpenCL is included.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library