Capillary rise in vuggy media
2020
Khan, Hasan J. | Mehmani, Ayaz | Prodanovic, Masa | DiCarlo, David | Khan, Dayeed J.
Carbonates can be highly heterogeneous formations with large variations in pore size distribution and pore space topology, which results in complex multiphase flow behavior. Here we investigate the spontaneous imbibition behavior of fluids in vuggy carbonates. Glass beads of 1.0 mm diameter, with dissolvable vug placeholders, are sintered to form multiple configurations of heterogeneous vuggy core with variations in matrix porosity, vug size, vug spatial location, and number of vugs. The core fabrication process is repeatable and allows the impact of vug textural properties to be investigated in a controlled manner.Capillary rise experiments are conducted in these proxy vuggy carbonate core and compared with the homogeneous non-vuggy core as reference. Continuous optical imaging is performed to track the position of the air-water interface in the cores. To understand the change in capillary height in the presence of a vug, a volume-of-fluid two-phase numerical simulation is performed in a parallel set of connected and disconnected tubes. Finally x-ray tomography scans are performed to identify the shape of the air-water interface in a select few cores.The results can be summarized as follows: disconnected vugs result in higher capillary rise compared to non-vuggy porous media. The vugs act as capillary barriers, diverting fluid flow to the adjacent connected channels, which ultimately results in a higher overall capillary rise. The results of this work highlight that radius of spontaneous invasion of aqueous phases, such as fracture fluid and hazardous wastes, are affected by vug porosity but not their distribution.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library