Enhancement of Light Absorption in Photovoltaic Devices using Textured Polydimethylsiloxane Stickers
2017
Hwang, Inchan | Choi, Deokjae | Lee, Sojeong | Seo, Ji hoon | Kim, Ka-Hyun | Yoon, Ilsun | Seo, Kwanyong
We designed and fabricated a random-size inverted-pyramid-structured polydimethylsiloxane (RSIPS-PDMS) sticker to enhance the light absorption of solar cells and thus increase their efficiency. The fabricated sticker was laminated onto bare glass and crystalline silicon (c-Si) surfaces; consequently, low solar-weighted reflectance values were obtained for these surfaces (6.88 and 17.2%, respectively). In addition, we found that incident light was refracted at the PDMS–air interface of each RSIPS, which redirected the incident power and significantly increased the optical path length in the RSIPS-PDMS sticker which was 14.7% greater than that in a flat-PDMS sticker. Moreover, we investigated power reflection and propagation through the RSIPS-PDMS sticker using a finite-difference time-domain method. By attaching an RSIPS-PDMS sticker onto both an organic solar cell (OSC) based on a glass substrate and a c-Si solar cell, the power conversion efficiency of the OSC and the c-Si solar cell were increased from 8.57 to 8.94% and from 16.2 to 17.9%, respectively. Thus, the RSIPS-PDMS sticker is expected to be universally applicable to the surfaces of solar cells to enhance their light absorption.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library