Role of Na+–H+ exchange in the modulation of L-type Ca2+ current during fluid pressure in rat ventricular myocytes
2013
Kim, Joon-Chul | Woo, Sun-Hee
Application of fluid pressure (FP) using pressurized fluid flow suppresses the L-type Ca2+ current through both enhancement of Ca2+ release and intracellular acidosis in ventricular myocytes. As FP-induced intracellular acidosis is more severe during the inhibition of Na+–H+ exchange (NHE), we examined the possible role of NHE in the regulation of ICa during FP exposure using HOE642 (cariporide), a specific NHE inhibitor. A flow of pressurized (∼16dyn/cm2) fluid was applied onto single rat ventricular myocytes, and the ICa was monitored using a whole-cell patch-clamp under HEPES-buffered conditions. In cells pre-exposed to FP, additional treatment with HOE642 dose-dependently suppressed the ICa (IC50=0.97±0.12μM) without altering current–voltage relationships and inactivation time constants. In contrast, the ICa in control cells was not altered by HOE642. The HOE642 induced a left shift in the steady-state inactivation curve. The suppressive effect of HOE642 on the ICa under FP was not altered by intracellular high Ca2+ buffering. Replacement of external Cl− with aspartate to inhibit the Cl−-dependent acid loader eliminated the inhibitory effect of HOE642 on ICa. These results suggest that NHE may attenuate FP-induced ICa suppression by preventing intracellular H+ accumulation in rat ventricular myocytes and that NHE activity may not be involved in the Ca2+-dependent inhibition of the ICa during FP exposure.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library