Investigation and mechanistic study into intramolecular hydroalkoxylation of unactivated alkenols catalyzed by cationic lanthanide complexes
2017
Zhu, Xuehua | Li, Guoyao | Xu, Fan | Zhang, Yong | Xue, Mingqiang | Shen, Qi
Cationic lanthanide complexes of the type [Ln(CH3CN)9]3+[(AlCl4)3]3–·CH3CN (Ln = Pr, Nd, Sm, Gd, Er, Yb, Y) served as effective catalysts for the intramolecular hydroalkoxylation/cyclization of unactivated alkenols to yield the cyclic ethers with Markovnikov regioselectivity under mild conditions. Novel cationic complexes, [AlCl(CH3CN)5]2+[(AlCl4)2]2–·CH3CN and [Nd(CH3CN)9]3+[(FeCl4)3]3–·CH3CN, were synthesized and evaluated for the intramolecular hydroalkoxylation/cyclization of unactivated alkenols for comparison. The active sequence of [Nd(CH3CN)9]3+[(FeCl4)3]3–·CH3CN < [AlCl(CH3CN)5]2+[(AlCl4)2]2–·CH3CN < [Nd(CH3CN)9]3+[(AlCl4)3]3–·CH3CN observed indicated that both the cation and anion have great influence on the activity. Comparative study on the activity of AlCl3 and its cationic complex [AlCl(CH3CN)5]2+[(AlCl4)2]2–·CH3CN revealed the formation of the cationic Al center enhanced the activity greatly. The 1H NMR studies indicated the activation of hydroxyl and olefin by the cationic Ln3+ center were involved in the reaction pathways.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library