AGRIS - International System for Agricultural Science and Technology

Machine learning model accurately predict maize grain yields in conservation agriculture systems in southern Africa

2021

Muthoni, Francis K. | Thierfelder, Christian L. | Mudereri, B.T. | Manda, J. | Bekunda, Mateete A. | Hoeschle-Zeledon, Irmgard


Bibliographic information
Publisher
Institute of Electrical and Electronics Engineers
Other Subjects
Forest
Language
English
License
Limited Access, Copyrighted; all rights reserved
ISBN
978-1-7281-6561-5
Type
Conference Paper
Source
Muthoni, F.K., Thierfelder, C., Mudereri, B.T., Manda, J., Bekunda, M. & Hoeschle-Zeledon, I. (2021). Machine learning model accurately predict maize grain yields in conservation agriculture systems in southern Africa. 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 26-29 July 2021, Shenzhen, China: IEEE, (p. 1-5).
Corporate Author
United States Agency for International Development

2024-10-31
2024-10-31
MODS
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at agris@fao.org