Use of Sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: case of soil texture mapping
2019
Gomez, Cécile | Dharumarajan, Subramanian | Féret, Jean-Baptiste | Lagacherie, Philippe | Ruiz, Laurent | Sekhar, Muddu | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Indian Council of Agricultural Research (ICAR) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS) | Centre National de la Recherche Scientifique (CNRS) | Géosciences Environnement Toulouse (GET) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS) | Indo-French Cell for Water Sciences = Cellule Franco Indienne de Recherche en Science de l’Eau (IFCWS = CEFIRSE) ; Indian Institute of Science [Bangalore] (IISc Bangalore) | Indian Institute of Science [Bangalore] (IISc Bangalore) | ANR-16-CE03-0006 | ANR-16-CE03-0006,ATCHA,Accompagner l'adaptation de l'agriculture irriguée au changement climatique(2016)
[Departement_IRSTEA]Territoires [TR1_IRSTEA]SYNERGIE [Axe_IRSTEA]TETIS-ATTOS [ADD1_IRSTEA]Dynamique et fonctionnement des écosystèmes
Show more [+] Less [-]International audience
Show more [+] Less [-]English. The Sentinel-2 mission of the European Space Agency (ESA) Copernicus program provides multispectral remote sensing data at decametric spatial resolution and high temporal resolution. The objective of this work is to evaluate the ability of Sentinel-2 time-series data to enable classification of an inherent biophysical property, in terms of accuracy and uncertainty estimation. The tested inherent biophysical property was the soil texture. Soil texture classification was performed on each individual Sentinel-2 image with a linear support vector machine. Two sources of uncertainty were studied: uncertainties due to the Sentinel-2 acquisition date and uncertainties due to the soil sample selection in the training dataset. The first uncertainty analysis was achieved by analyzing the diversity of classification results obtained from the time series of soil texture classifications, considering that the temporal resolution is akin to a repetition of spectral measurements. The second uncertainty analysis was achieved from each individual Sentinel-2 image, based on a bootstrapping procedure corresponding to 100 independent classifications obtained with different training data. The Simpson index was used to compute this diversity in the classification results. This work was carried out in an Indian cultivated region (84 km 2 , part of Berambadi catchment, in the Karnataka state). It used a time-series of six Sentinel-2 images acquired from February to April 2017 and 130 soil surface samples, collected over the study area and characterized in terms of texture. The classification analysis showed the following: (i) each single-date image analysis resulted in moderate performances for soil texture classification, and (ii) high confusion was obtained between neighboring textural classes, and low confusion was obtained between remote textural classes. The uncertainty analysis showed that (i) the classification of remote textural classes (clay and sandy loam) was more certain than classifications of intermediate classes (sandy clay and sandy clay loam), (ii) a final soil textural map can be produced depending on the allowed uncertainty, and iii) a higher level of allowed uncertainty leads to increased bare soil coverage. These results illustrate the potential of Sentinel-2 for providing input for modeling environmental processes and crop management. This article belongs to the Section Biogeosciences Remote Sensing.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Institut national de la recherche agronomique