Atrazine residues in estuarine water and the aerial deposition of atrazine into Rhode River, Maryland [USA]
1981
Wu, T.L. (Smithsonian Institution, Edgewater, MD (USA). Chesapeake Bay Center for Environmental Studies)
Water samples from the Rhode River, an estuary situated on the western shore of the Chesapeake Bay, were analyzed for atrazine residues twice a week for 2 yr. Precipitation samples, which included dryfall, rainfall, and snowfall were collected with wide-mouth stainless steel collection pans situated about 20 m above ground in an open space. A total of 68 precipitation samples was collected from December 1976 to February 1979. Atrazine residues were detectable in estuarine water and in rainwater year-round. Atrazine residues in estuarine water were generally 6 to 190ng/l, atrazine residues in rainwater (bulk precipitation) were 3 to 2190ng/l. Atrazine residues in rainwater samples collected during the winter season (January to April 1977) were unexpectedly high (e.g. 3 to 970ng/l). The highest atrazine concentration of 2190ng/l was detected from a 0.76 cm rainfall event collected on May 19, 1977. Intermittent spraying operations of atrazine within the cornfields were generally done during May of each year. Rain samples collected during May of 1978 also showed higher atrazine residues than the rest of the 1978 growing season, but at levels much less than those detected in 1977 rainwater. Although high attrazine concentrations were detected in winter rainfall, these did not result in similarly higher atrazine concentrations in estuarine receiving waters. Our data showed a decline of atrazine concentrations in estuarine water in October and November which continued until a rainfall following Spring herbicide applications. Atrazine is enriched at the microsurface layer of estuarine water, but direct atmospheric input of atrazine did not seem to contribute significantly to the enrichment mechanism. Atrazine is believed to be transported long distances in polluted air masses. The estuarine microsurface layer could be a source of atmospheric atrazine, but the importance of the source is yet to be determined. Atrazine was quantitatively determined by GC using a nitrogen specific electrolytic detector and was confirmed by GC/Mass.
Show more [+] Less [-]Bibliographic information
This bibliographic record has been provided by European Union