Imputaciones múltiples, herramienta para la estimación de datos faltantes en la modelación de regresión
2019
Mejía-Giraldo, Luis Miguel | Restrepo-Betancur, Luis Fernando
Spanish; Castilian. En los últimos años se ha apreciado un incremento en la investigación sobre problemas de datos faltantes, siendo la imputación múltiple una fundamental alternativa; donde los conjuntos de datos a menudo presentan complejidades que son actualmente difíciles de manejar de manera apropiada en el marco de probabilidad, pero relativamente simples de tratar con imputación; por esto, el presente artículo describe una serie de aspectos prácticos para aplicar dicha metodología en el caso de la modelación de captura de carbono para Colombia, con base en las bases de datos del Banco Mundial incluyendo datos faltantes alcanzando R2 de 79,30%, resaltándose que al momento de estimar dichos datos y recalcular el modelo respectivo se evidencia un mayor R2, siendo del 94,79%, lo cual evidencia una mejora sustancial del respectivo modelo de regresión lineal múltiple como tal.
Show more [+] Less [-]Bibliographic information
This bibliographic record has been provided by Universidad de Córdoba