Não normalidade multivariada e multicolinearidade na análise de trilha em milho
2013
Toebe, Marcos(Universidade Federal de Santa Maria Departamento de Fitotecnia) | Cargnelutti Filho, Alberto(Universidade Federal de Santa Maria Departamento de Fitotecnia)
English. The objective of this work was to evaluate the effect of multivariate nonnormality and multicollinearity in the path analysis of corn. We used data from 13 corn cultivar competition trials. The response variable (grain yield) and seven explanatory variables (number of days to tasseling, plant height, ear height, relative ear position, number of plants, number of ears and prolificity) were measured in each cultivar. Then, data transformation and the univariate and multivariate normality diagnosis were proceeded. The correlation coefficients were calculated and the diagnosis of multicollinearity was performed, before and after data transformation. The path analysis was done according to three methods: traditional; under multicollinearity (ridge path analysis); and traditional with variable elimination. Data transformation reduces the degree of multicollinearity and the variability of the direct effects, in the traditional path analysis with high multicollinearity. Multicollinearity exerts more impact on the estimation of the direct effects in path analysis than multivariate nonnormality. The traditional path analysis with elimination of variables is more appropriate than the ridge path analysis.
Show more [+] Less [-]Portuguese. O objetivo deste trabalho foi avaliar a interferência da não normalidade multivariada e da multicolinearidade na análise de trilha, em milho. Foram utilizados os dados de 13 ensaios de competição de cultivares de milho. Foram mensuradas a variável principal (produtividade de grãos) e sete variáveis explicativas (número de dias até o florescimento, estatura de plantas, altura de inserção da espiga, posição relativa da espiga, número de plantas, número de espigas e prolificidade), em cada cultivar. Procedeu-se, então, à transformação dos dados e ao diagnóstico de normalidade univariada e multivariada. Antes e após a transformação de dados, foram calculados os coeficientes de correlação e realizado o diagnóstico de multicolinearidade. A análise de trilha foi realizada por três métodos: tradicional; sob condições de multicolinearidade (análise de trilha em crista); e tradicional com eliminação de variáveis. A transformação de dados reduz o grau de multicolinearidade e a variabilidade das estimativas dos efeitos diretos, na análise de trilha tradicional com alto grau de multicolinearidade. A multicolinearidade exerce maior impacto sobre a estimativa dos efeitos diretos nas análises de trilha do que a não normalidade multivariada. A análise de trilha tradicional com eliminação de variáveis é mais adequada do que a análise de trilha em crista.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Scientific Electronic Library Online Brazil