Low Redundancy Feature Selection of Short Term Solar Irradiance Prediction Using Conditional Mutual Information and Gauss Process Regression
2018
Nantian Huang | Ruiqing Li | Lin Lin | Zhiyong Yu | Guowei Cai
Solar irradiation is influenced by many meteorological features, which results in a complex structure meaning its prediction has low efficiency and accuracy. The existing prediction methods are focused on analyzing the correlation between features and irradiation to reduce model complexity but they do not account for redundant analysis in feature subset. In order to reduce the information redundancy in the feature set and improve prediction accuracy, a novel feature selection method for short-term irradiation prediction based on Conditional Mutual Information (CMI) and Gaussian Process Regression (GPR) is proposed. Firstly, the CMI values of different features are calculated to evaluate correlation and redundant information between features in the feature subsets. Secondly, GPR with a stable prediction performance and adaptively determined hyper parameters is used as the predictor. The optimal feature subset and the GPR covariance function can be selected using Sequential Forward Selection (SFS). Finally, an optimal predictor is determined by the minimum prediction error and the prediction of solar irradiation is carried out by the determined predictor. The experimental results show that CMI-GPRAEK has the highest prediction accuracy with the optimal feature set has low dimension, which is 4.33% lower in MAPE than the predictor without feature selection, although both of them have an optimal kernel function. The CMI-GPRAEK is less complicated for the predictor and there is less redundancy between features in the model with the dimension of the optimal feature set is only 14.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Directory of Open Access Journals