Genetic variability of seed-quality traits in gamma-induced mutants of sunflower (Helianthus annuus L.) under water-stressed condition
2011
Haddadi, Parham, Haddadi | Yazdi-Samadi, B. | Berger, Michel | Naghavi, M. R. | Calmon, A. | Sarrafi, A. | Unité mixte de recherche interactions plantes-microorganismes ; Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS) | École nationale supérieure agronomique de Toulouse (ENSAT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT) | University of Tehran | Neuro-Gastroentérologie et Nutrition (NGN) ; Institut National de la Recherche Agronomique (INRA)-Ecole supérieure d'agriculture de Purpan (ESAP) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT) | Institut National de la Recherche Agronomique (INRA) | Gundishapur project [12267RD]; French government; Iranian government
International audience
Show more [+] Less [-]English. Sunflower is one of the major annual world crops grown for edible oil and its meal is a potential source of protein for human consumption. It contains tocopherol that decreases potential risk of chronic diseases in human. The objectives of the current research are to assess the genetic variability and to identify AFLP markers and candidate genes associated with seed-quality traits under well-irrigated and water-stressed conditions in gamma-induced mutants of sunflower. Two mutant lines, M8-826-2-1 and M8-39-2-1, with significant increased level of oleic acid were identified that can be used in breeding programs for quality increase high oxidative stability and heart-healthy properties. The significant increased level of tocopherol in mutant lines, M8-862-1N1 and M8-641-2-1, is justified by observed polymorphism for tocopherol pathway-related gene; MCT. The most important marker for total tocopherol content is E33M50_16 which explains 33.9% of phenotypic variance. One of the most important candidate genes involving fatty acid biosynthesis, FAD2 (FAD2-1), is linked to oleic and linoleic acids content and explained more than 53% of phenotypic variance. Common markers associated with different seed-quality traits in well-irrigated and water-stressed conditions could be used for marker-assisted selection (MAS) in both conditions. Other markers, which are specific for one condition whereas linked to different traits or specific for a trait, could be useful for a given water treatment.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Institut national de la recherche agronomique