Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data
2023
Daniel Kim | Andy Tran | Hani Jieun Kim | Yingxin Lin | Jean Yee Hwa Yang | Pengyi Yang
Abstract Inferring gene regulatory networks (GRNs) is a fundamental challenge in biology that aims to unravel the complex relationships between genes and their regulators. Deciphering these networks plays a critical role in understanding the underlying regulatory crosstalk that drives many cellular processes and diseases. Recent advances in sequencing technology have led to the development of state-of-the-art GRN inference methods that exploit matched single-cell multi-omic data. By employing diverse mathematical and statistical methodologies, these methods aim to reconstruct more comprehensive and precise gene regulatory networks. In this review, we give a brief overview on the statistical and methodological foundations commonly used in GRN inference methods. We then compare and contrast the latest state-of-the-art GRN inference methods for single-cell matched multi-omics data, and discuss their assumptions, limitations and opportunities. Finally, we discuss the challenges and future directions that hold promise for further advancements in this rapidly developing field.
Show more [+] Less [-]Bibliographic information
This bibliographic record has been provided by Directory of Open Access Journals