On-line biofouling monitoring and qualification based on local thermal and periodic excitation with MEMS sensor
2021
Boukazia, Yassim | Delaplace, Guillaume | Cadé, M. | Bellouard, F. | Fillaudeau, L. | Toulouse Biotechnology Institute (TBI) ; Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Unité Matériaux et Transformations - UMR 8207 (UMET) ; Centrale Lille-Institut de Chimie - CNRS Chimie (INC-CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Processus aux Interfaces et Hygiène des Matériaux (PIHM) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut de Recherche Hydraulique | Aqualabo | BPI France F1311001L
International audience
Show more [+] Less [-]English. Water and wastewater processing (cooling tower, heat exchanger, treatment, etc.) generate desirable or undesirable biofouling (mineral, organic, biological) which may affect equipment or process performances. Fouling magnitude and nature stand as critical parameters to be evaluated in-situ and on-line to control and optimize the operation (production, cleaning). A fouling sensor based on a Micro-Electro-Mechanical Systems (MEMS) structure generating a local in-situ periodic thermal excitation (PTR) was studied in order to quantify and qualify fouling. At lab scale, model deposit (PVC) were used to simulate fouling conditions. Limits of detection (LOD) and quantification (LOQ) under steady and periodic thermal regimes were compared. Transposition to industrial conditions was investigated at pilot plant scale. A continuous bioprocess (PropellaTM reactor) was fed with diluted wastewater under controlled operating condition (temperature, mixing rate, flow rates, residence time) in order to mimic realistic industrial conditions and to generate a complex biofouling over six weeks. Thermal diffusivity, capacitive and resistive components are extracted from thermal spectrum response and a final fouling factor is introduced. Results demonstrate the ability to quantify and qualify a complex biofouling with in-situ and on-line information.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Institut national de la recherche agronomique