Quantification of Methane Emissions Rate Using Landgem Model and Estimating the Hydrogen Production Potential from Municipal Solid Waste Landfill Site
2023
C. Ramprasad, A. Anandhu and A. Abarna
In India, solid waste is deposited mostly in uncontrolled open landfills without proper segregation and handling methods. Organic wastes dumped in a landfill undergo anaerobic decomposition and emit landfill gases like methane and carbon dioxide. Landfill gases are a significant contributor to greenhouse gases and greatly impact climate change. In the interim, reducing gas emissions and controlling and recycling such gasses is important from environmental hygienic, and global perspectives. Landfill gas has tremendous potential to convert as a source of alternative fuel. The present study estimates the CH4 (Methane) and CO2 (Carbon dioxide) emissions and quantifies the renewable energy available and hydrogen production potential using the LandGEM 3.02 empirical models for the Kanuru, Vijayawada landfill. It was observed that methane emission peaked in 2042 with an emission rate according to the model was 2.51E+08 Metric tons CO2 equivalents. The gas-recovery system is an essential component in landfills for extracting energy with 75-80% efficiency; the generation rate of greenhouse gases will reduce to around 1.78E06 Mg of CO2 eq. The predicted methane emissions vary from 1.33E6-9.22E6 cu.m per year for the period of 2010-2042. It was also estimated that annual energy production from LFG emissions was from 1.8-130 GWh per year, and hydrogen production potential was 0.6-43.3 Gg per year. The study concludes that projected scientific data will assist policymakers in creating sustainable MSW management by bridging the gap between sustainable renewable energy production and protecting the environment. The basic objectives of the study include the quantification of landfill gas production using the LandGEM model for Vijayawada, assessing the electricity generation potential of the landfill methane gas emitted, methane and carbon dioxide recovery from landfills with energy conversion could reduce GHG emissions, and estimation of hydrogen generation potential from the landfill methane emissions.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Directory of Open Access Journals