AGRIS - International System for Agricultural Science and Technology

Studying changes in evapotranspiration in different climatic regions in Syria

2022

Hanan Abdo


Bibliographic information
Publisher
Tishreen University Faculty of Agriculture Engineering
Other Subjects
تغير المناخ; Aridity; القحولة; التبخر نتح الكامن; Potential evapotranspiration
Language
Arabic
Note
References 1- Abdelghani, C., Hoedjes, J. C. B., Rodriquez, J.-C., Watts, C. J., Garatuza, J., Jacob, F., and Kerr, Y. H. (2008). Using remotely sensed data to estimate area-averaged daily surface fluxes over a semiarid mixed agricultural land, Agr. Forest Meteorol, 148, 330–342,. 2- Ainsworth EA. (2008). Rice production in a changing climate: a metaanalysis of responses to elevated carbon dioxide and elevated ozone concentrations. Global Change Biology 14, 1642–1650. 3- Alcamo J, Flörke M, Märker M .(2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol Sci J. 52(3):247–275. 9. 4- Allen, I.A.Walter, R. Elliott, T. Howell, D. Itenfisu, and M. Jensen, (2005).The ASCE standardized reference evapotranspiration equation. American Society of Civil Engineers, 59 pp 5- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E (2011) Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag., 98, 899–920. 6- Allen,R.G.,Pereira,L.S.,Raes,D.,and Smith,M.(1998).Crop evapotranspiration,Guideline for computing crop water requirements,FAO irrigation and drainage paper no. 56, Rome, Italy, 326 pp 7- Anderson, M. C., Allen, R. G., Morse, A., and Kustas,W. P(2012).Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources, Remote Sens. Environ, 122, 56–65. 8- Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., and Kustas, W. P (2011).Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States, J. Climate, 15, 2025–2044. 9- Arnell NW(2004). Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob Environ Change 14(3-4):31–52. 8. 10- Azizzadeh, M., Javan, K.(2015). Analyzing trends in reference evapotranspiration in northwest part of Iran. J. Ecol. Eng. 16 (2), 1–12. 11- Barrow,C.J(1992)World Atlas of Desertification (United NationsEnvironment Programme) ed N Middleton and D S G Thomas(London: Edward Arnold). 12- Blaney, H.F. and Criddle, W.P. (1950) Determining water requirements in irrigated areas from climatological and irrigation data. USDA (SCS) TP-96, 48. 13- Brutsaert, W. (1982) Evaporation into the Atmosphere: Theory, History, and Applications. Springer, Dordrecht, 299 14- Cai,X (1999). Irrigated and Rain fed Crop Area and Yield (Washington ,DC: International Food Policy Research Institute, Mimeo). 15- Capra, A., Consoli, S. and Scicolone, B. (2013). Long-Term Climatic Variability in Calabria and Effects on Drought and Agrometeorological Parameters. Water Resources Management 27: 601–617. 16- Chaouche, K., Neppel, L., Dieulin, C., Pujol, N., Ladouche, B., Martin, E., Salas, D.,Caballero, Y (2010). Analyses of precipation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. Compt. Rendus. Geosci. 342, 234–243 17- Chen S, Liu Y, Thomas A.(2006).Climatic change on the Tibetan Plateau: potential evapotranspiration trends from 1961–2000. Climatic Chang. 76(3–4):291–31918- Croitoru, A.E., Piticar, A., Dragotă, C.S., Burada, D.C.(2013). Recent changes in reference evapotranspiration in Romania. Glob. Planet. Chang. 111, 127–137. 19- Dai A, Zhao T, Chen J. (2018). Climate change and drought: a precipitation and evaporation perspective. Curr Clim Chang Reports 4:301– 312. 20- Dai, A., K. E. Trenberth, and T. Qian .(2004). A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming, J. Hydrometeorol., 5, 1117–1130. 21- Dardel, C., L. Kergoat, P. Hiernaux, E. Mougin, M. Grippa, and C. J. Tucker (2014).Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger), Remote Sens. Environ., 140, 350–364. 22- Dinar, A.; Tieu, A.; Huynh, H. (2019). Water scarcity impacts on global food production. Glob. Food Secur. 23, 212–226. 23- Dolman AJ, De Jeu R .(2010).Evaporation in focus. Nat Geosci 3(5):296–296. 24- Donohue, R. J., M. L. Roderick, T. R. McVicar, and G. D. Farquhar (2013). Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments, Geophys. Res. Lett., 40, 3031–3035. 25- Donohue, R. J., T. R. McVicar, and M. L. Roderick (2009). Climate related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006, Global Change Biol., 15, 1025–1039. 26- Droogers, P., Immerzeel, W. W., and Lorite, I.J (2010). Estimating actual irrigation application by remotely sensed evapotranspiration observations, Agr.Water Manage. 97.1351–1359. 27- Espadafor, M., Lorite, I.J., Gavilán, P., Berengena, J.( 2011). An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45years in Southern Spain. Agric. Water. Manag. 98, 1045–1061. 28- Fan, J., Wu, L., Zhang, F., Xiang, Y., Zheng, J. (2016). Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015, Journal of Hydrology.,542,923-937. 29- Feng, S., and Q. Fu (2013). Expansion of global drylands under a warming climate, Atmos. Chem. Phys., 13(19), 10,081–10,094. 30- Fu, Q., and S. Feng (2014). Responses of terrestrial aridity to global warming, J. Geophys. Res. Atmos., 119, 7863–7875. 31- Fung F, Lopez A, New M (2011). Water availability in +2C and +4C worlds. Philos Trans Ser A 369(1934):99–116. 11. 32- Gao, G., Chen, D., Ren, G., Chen, Y., Liao, Y (2006). Spatial and temporal variations and controlling factors of potential ET in china: 1956-2000. J. Geogr. Sci. 16 (1), 3–12. 33- García-Garizábal, I., Causapé, J., Abrahao, R., Merchan, D. (2014): Impact of Climate Change on Mediterranean Irrigation Demand: Historical Dynamics of Climate and Future Projections. Water Resources Management 28: 1449-1462 34- Gerten D, Heinke J, Hoff H, Biemans H, Fader M, Waha K (2011). Global water availability and requirements for future food production. J Hydrometeorol 12(5):885–899. 32. 35- Gerten D, Schaphoff S, Lucht W (2007). Potential future changes in water limitations of the terrestrial biosphere. Clim Change 80(3-4):277–299. 36- Gonzalez-Dugo, M. P., Neale, C. M. U., Mateos, L., Kustas, W. P., Prueger, J. H., Anderson, M. C., and Li, F (2009).A comparison of operational remote sensing-based models for estimating crop evapotranspiration, Agr. Forest Meteorol. 149, 1843–1853. 37- Gordon, L. J., Finlayson, C., and Falkenmark, M (2010). Managing water in agriculture for food production and other ecosystem services, Agr. Water. Manage.97, 512–519.38- Gosling, S.N., Arnell, N.W., 2016. A global assessment of the impact of climate change on water scarcity. Climatic Change 134, 371–385 39- Grassini, Patricio; Yang, Haishun; and Cassman, Kenneth G.(2009).Limits to maize productivity in the Western Corn-Belt: A simulation analysis for fully irrigated and rain fed conditions. Agronomy & Horticulture -- Faculty Publications. 312. 40- Haddeland I, Heinke J, Biemans H, Eisner S, Flörke M, Hanasaki N, Konzmann M, Ludwig F, Masaki Y, Schewe J, Stacke T, Tessler ZD, Wada Y, Wisser D.(2014). Global water resources affected by human interventions and climate change. Proc Natl Acad Sci U S A. 4;111(9):3251-6. 41- Hagemann, S., Chen, C., Clark, D. B., Folwell, S., Gosling, S. N., Haddeland, I., Hanasaki, N., Heinke, J., Ludwig, F., Voss, F., and Wiltshire, A. J.(2012).Climate change impact on available water resources obtained using multiple global climate and hydrology models, Earth Syst. Dynam., 4, 129–144, 42- Hanasaki N, Inuzuka T, Kanae S, Oki T .(2010).An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J Hydrol (Amst) 384(3-4):232–244. 33. 43- Hargreaves GL, Samani ZA. (1985).Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture 1: 96–99. 44- Held IM, Soden BJ(2000). Water vapor feedback and global warming, Annu RevEnergy Environ 25:441–475. 45- Hobbins, M. T., A. Dai, M. L. Roderick, and G. D. Farquhar (2008). Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends, Geophys. Res. Lett., 35, L12403 46- Huo, Zailin & Dai, Xiaoqin & Feng, Shaoyuan & Kang, Shaozhong & Huang, Guanhua (2013). Effect of climate change on reference evapotranspiration and aridity index in arid region of China. Journal of Hydrology. 492. 24–34. 47- Jung, Martin & Reichstein, Markus & Ciais, Philippe & Seneviratne, Sonia & Sheffield, Justin & Goulden, Michael & Bonan, Gordon & Cescatti, Alessandro & Chen, Jiquan & de Jeu, Richard & Dolman, Han (A.J.) & Eugster, Werner & Gerten, Dieter & Gianelle, Damiano & Gobron, Nadine & Heinke, Jens & Kimball, J. & Law, Beverly & Montagnani, Leonardo. (2010). Recent Decline in the Global Land Evapotranspiration Trend Due to Limited Moisture Supply. Nature. 467. 951-4. 10.1038/nature09396. 48- Kamali, M.I.; Nazari, R (2018). Determination of maize water requirement using remote sensing data and SEBALalgorithm. Agric. Water Manag.209, 197–205 49- Karl, T.R. & Trenberth, Kevin. (2003). Modern Global Change. Science (New York, N.Y.). 302. 1719-23. 10.1126/science.1090228. 50- Katerji, N. and Rana, G. (2011). Crop Reference Evapotranspiration: A Discussion of the Concept, Analysis of the Process and Validation. Water Resources Management 25: 1581–1600 51- Katul,G.G.,Oren,R., Manzano, S., Higgins, C., and Parlange, M.B(2012). Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system, Rev.Geophys. 50, RG3002. 52- Keenan, T.F.; Hollinger, D.Y.; Bohrer, G.; Dragoni, D.; Munger, J.W.; Schmid,H.P.; Richardson, A.D.(2013).Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature. 499, 324–327. 53- Kendall, M.(1975). Rank Correlation Methods, 4th ed.; Charles Gri_n: London, UK, 54- Kimball B.A.(2016). Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Current Opinion in Plant Biology.31, 36–43.55- Kitsara,G.,Papaioannou,G.,Athanasios,Retalis,A.(2013).Dimming/brightening in Athens: trends in sunshine duration, cloud cover and reference evapotranspiration.Water Resour. Manag. 27, 1623–1633. 56- Konopala,G.,Mishra,A.K,Wada,y.& Mann,M.E (2020). Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation.Nat Commun11,3044. 57- Kumar S, Lawrence DM, Dirmeyer PA, Sheffield J .(2014). Less reliable water availability in the 21st century climate projections. Earth’s Futur.2:152–160. 58- Kundzewicz, Z. W.,and Gerten, D (2014).Grand challenges related to the assessment of climate change impacts on freshwater resources. J. Hydrol. Eng.20. 59- Lakatos, M., Weidinger, T., Hoffmann, L., Bihari, Z., and Horváth, Á.(2020).Computation of daily Penman–Monteith reference evapotranspiration in the Carpathian Region and comparison with Thornthwaite estimates, Adv. Sci. Res., 16, 251–259, 60- Lhommel, J.-P. Towards a rational definition of potential evaporation.(1997). Hydrology and Earth System Sciences Discussions, European Geosciences Union, 1 (2), pp.257-264. 61- Li, Sien & Kang, Shaozhong & Zhang, Lu & Zhang, Jianhua & TS, Du & Tong, Ling & Ding, Risheng. (2016). Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions. Journal of Hydrology. 543. 10.1016. 62- Lionboui, H., Benabdelouahab, T., Elame, F., Hasib, A., Boulli, A.(2016). Multi-year agroeconomic modelling for predicting changes in irrigation water management indicators in the Tadla sub-basin. International Journal of Agricultural Management 5, 96–105 63- Liu, B.; Guan, H.; Zhao, W.; Yang, Y.; Li, S.(2016) Groundwater facilitated water-Use efficiency along a gradient of groundwater depth in arid northwestern China. Agric. For. Meteorol., 233, 235–241. 64- Liu, W., & Sun, F.(2017). Projecting and attributing future changes of evaporative demand over China in CMIP5 climate models. J. Hydrometeorol. 65- Ma, Q.; Zhang, J.; Sun, C.; Guo, E.; Zhang, F.; Wang, M.(2017). Changes of Reference Evapotranspiration and Its Relationship to Dry/Wet Conditions Based on the Aridity Index in the Songnen Grassland, Northeast China. Water, 9, 316. 66- Ma, X., Zhang, M., Li, Y., Wang, S., Ma, Q., Liu, W. (2012).Decreasing potential evapotranspiration in the Huanghe River Watershed in climate warming during 1960-2010.Journal of Geographical Sciences, 22: 977-988 67- Mahmoud, S.H., Gan, T.Y (2019). Irrigation water management in arid regions of Middle East: assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data. Agric. Water Manag. 212, 35–47. 68- Marques, Maria Jose & Schwilch, Gudrun & Lauterburg, Nina & Crittenden, Stephen & Tesfai, Mehreteab & Stolte, Jannes & Zdruli, Pandi & Zucca, Claudio & Petursdottir, Thorunn & Evelpidou, Niki & Karkani, Eleana & Asliyilmazgil, Yasemen & Panagopoulos, Thomas & Yirdaw, Eshetu & Kanninen, Markku & Rubio, José & Schmiedel, Ute & Doko, Adrian. (2016). Multifaceted Impacts of Sustainable Land Management in Drylands: A Review. Sustainability. 8. 10.3390/su8020177. 69- Matzneller, P., Ventura, F. , Gaspari, N., Pisa, P.R. (2010). Analysis of climatic trends in data from 615 the agrometeorological station of Bologna-Cadriano, Italy (1952-2007). Climatic Change 616 100: 717-731 70- Mavromatis, T., Stathis, D.(2011). Response of the water balance in Greece to temperature and precipitation trends. Theor. Appl. Climatol. 104, 13–24.71- McKenney, M. S., and N. J. Rosenberg (1993), Sensitivity of some potential evapotranspiration estimation methods to climate change, Agric. For. Meteorol., 64, 81–110 72- McLaughlin, D.; Kinzelbach, W.(2015) Food security and sustainable resource management. Water Resour. Res. 51, 4966–4985. 73- McVicar, T.R., Roderick, M.L., Donohue, R.J., Van Niel, T.G., (2012b). Less bluster ahead?.Ecohydrological implications of global trends of terrestrial near-surface wind speeds. Ecohydrology, 5: 381-388. 74- Mekonnen, M.M., Hoekstra, A.Y.(2016). Four billion people facing severe water scarcity. Science advances 2, e1500323 75- Milly, P. C. D., and K. A. Dunne (2011). On the hydrologic adjustment of climate-model projections: The potential pitfall of potential evapotranspiration, Earth Interact., 15(1), 1–14. 76- Milly, P.C. Dunne KA, Vecchia AV (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature. 438(7066):347–350. 10. 77- Miralles DG, De Jeu RAM, Gash JH, Holmes TRH, Dolman AJ (2011)a. Magnitude and variability of land evaporation and its components at the global scale. Hydrol Earth Syst Sci 15(3):967–981. 78- Monteith, J. L.(1981).Evaporation and surface temperature, Q. J. Roy. Meteorol. Soc., 107, 1–27. 79- Moonen, A.C., Ercoli, L., Mariotti, M., Masoni, A. (2002). Climate change in Italy indicated by agrometeorological indices over 122 years. Agricultural and Forest Meteorology 111: 13-27 80- Moratiel, R., Snyder, R.L., Duran, J.M., Tarquis, A.M. (2011). Trends in climatic variables and future reference evapotranspiration in Duero Valley (Spain). Nat. Hazards Earth Syst. Sci. 11, 1795–1805. 81- Oki, T. and Kanae, S(2006). Global hydrological cycles and world water resources. Science 313, 1068–1072. 82- Otkin, J. A., Anderson, M. C., Hain, C., Svoboda, M., Johnson, D.,Mueller, R., Tadess, T., Wardlow, B., and Brown, J.(2016). Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought, Agr. Forest Meteorol. 218–219, 230–242. 83- Palumbo, A.D., Vitale, D., Campi, P., Mastrorilli, M ( 2011). Time trend in reference evapotranspiration: analysis of a long series of agrometeorological measurements in Southern Italy. Irrig. Drain. Syst. 25, 395–411 84- Papaioannou, G., Kitsara, G., Athanasatos, S. (2011). Impact of global dimming and brightening on reference evapotranspiration in Greece. J. Geophys. Res. 116, D09107. 85- Parry M , Arnell N, McMichael T , Nicholls R, Martens P, Kovats,S, Rosenzweig C , Iglesias A , Fischer G (2001). Millions at risk: Defining critical climate change threats and targets. Glob Environ Change. 11:181–183. 86- Pastor, A., Palazzo, A., Havlik, P., Biemans, H., Wada, Y., Obersteiner, M., Kabat, P.,Ludwig, F.(2019). The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability 2, 499–507. 87- Pavanelli, D. and Capra, A. (2014). Climate change and human impacts on hydroclimatic variability in the reno river catchment, Northern Italy. Clean - Soil, Air, Water 42: 535-545. 88- Penman HL .(1956). Evaporation: an introductory survey. Neth J Agr Sci 4(1):9–29. 89- Peterson, T.C., Golubev, V.S., Groisman, P.Y.(1995). Evaporation losing its strength. Nature 377 (6551) (687–588).90- Piao, S., J. Fang, H. Liu, and B. Zhu (2005), NDVI-indicated decline in desertification in China in the past two decades, Geophys. Res. Lett., 32, L06402 91- Prăvălie, R., (2013): Climate issues on aridity trends of southern Oltenia in the last five 652 decades.Geographia Technica, 70-79. 92- Qi, P., Zhang, G., Xu, Y.J., Wu, Y., & Gao, Z. (2017). Spatiotemporal Changes of Reference Evapotranspiration in the Highest-Latitude Region of China. Water, 9, 493. 93- Rahimzadegan, M.; Janani, A(2019). Estimating evapotranspiration of pistachio crop based on SEBAL algorithm using Landsat 8 satellite imagery. Agric. Water Manag. 217, 383–390. 94- Rawat, K.S.; Singh, S.K.; Bala, A.; Szabó, S. (2019). Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment. Agric. Water Manag. 213, 922–933. 95- Ren GY, Guo J (2006). Change in pan evaporation and the influential factors over China: 1956–2000. J Natural Resources 21(1): 31–44 (in Chinese) 96- Rockström J, Falkenmark M, Karlberg L,Hoff H, Rost S, Gerten D.(2009). Future water availability for global food production: The potential of green water for increasing resilience to global change. Water Resour Res 45:1–16. 97- Roderick ML, Farquhar GD .(2004). Changes in Australian pan evaporation from 1970 to 2002. Int J Climatol 24(9):1077–1090. 98- Roderick, M. L., Greve, P and Farquhar, G. D.(2015). On the assessment of aridity with changes in atmospheric CO2. Wat. Resour. Res. 51, 5450–5463. 99- Roderick, M. L., M. T. Hobbins, and G. D. Farquhar (2009a). Pan evaporation trends and the terrestrial water balance: I. Principles and observations, Geogr. Compass. 3(2), 746–760. 100- Roderick, M. L., M. T. Hobbins, and G. D. Farquhar (2009b). Pan evaporation trends and the terrestrial water balance: II. Energy balance and interpretation, Geogr. Compass. 3(2), 761–780. 101- Rosegrant M W, Cai Xand Cline S A. (2002). World Water and Food to2025 .Washington, DC: International Food Policy Research Institute.322. 102- Rosenberg, N. J., M. S. McKenney, and P. Martin (1989). Evapotranspiration in a greenhouse-warmed world: A review and a simulation, Agric. For. Meteorol., 47, 303–320 103- Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., & Schaphoff, S (2008). Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44(9):1–17. 104- Sah, Rameswar & Manigopa, Chakraborty & Pandit, Madhav & Tudu, Veena & Chakravarty, Milan & Narayan, Satish & Rana, Maneet & Moharana, Debashis. (2020). Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports. 10. 10.1038/s41598-020-59689-7. 105- Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colón-González FJ, Gosling SN, Kim H, Liu X, Masaki Y, Portmann FT, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P(2014). Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. U S A.4;111(9):3245-50 . 106- Schlesinger, W.H.; Jasechko, S.(2014). Transpiration in the global water cycle. Agric. For. Meteorol. 189–190, 115–117. 107- Schultz, B. and De Wrachien, D (2002). Irrigation and drainage systems research and development in the 21st century, Irrig. Drain. Sci.51, 311–327, 2002.108- Seneviratne S.I, Corti T, Davin EL, Hirschi M,Jaeger E B,Lehner I,Orlowsky B,Teuling A J (2010). Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161. 109- Sheffield, J., E. F. Wood, and M. L. Roderick (2012). Little change in global drought over the past 60 years, Nature, 491(7424), 435–438. 110- Shen, Y.J.; Li, S.; Chen, Y.; Qi, Y.; Zhang, S (2013). Estimation of regional irrigation water requirement and water ensupply risk in the arid region of Northwestern China 1989–2010. Agric. Water Manag. 2013, 128, 55–64. 111- Siebert S and Döll P (2010) Quantifying blue and green virtual water contents in global crop production as well as potentialproduction losses without irrigation J. Hydrol. 384 198–217. 112- Suat I, Kabenge I, Skaggs KE, Mutiibwa D .(2012). Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River Basin, central Nebraska–USA. J Hydrol .420–421:228 244. 113- Sun, H.; Yang, Y.; Wu, R.; Gui, D.; Xue, J.; Liu, Y.; Yan, D(2019). Improving Estimation of Cropland Evapotranspiration by the Bayesian Model Averaging Method with Surface Energy Balance Models. Atmosphere 10, E188. 114- Swaminathan MS.(2010).Achieving food security in times of crisis. N Biotechnol. Nov 30;27(5):453-60. Epub 2010 Aug 12. PMID: 20708722 115- Talbot, Michael. (2019). Comparison of Evapotranspiration Estimation Methods and Implications for Water Balance Model Parameterization in the Midwestern United States. Retrieved from the University of Minnesota Digital Conservancy 116- Taylor, W.A.(2000). Change-point analysis: A powerful new tool for detection changes. 117- Thenkabail, P. S., Hanjra, M. A., Dheeravath, V., and Gumma, M (2010).Global croplands and their water use from remote sensing and no remote sensing perspectives, in: Advances in environmental remote sensing: sensors, algorithms and applications, edited by:Weng, Q., Taylor and Francis, CRC Press, Boca Raton, Florida USA, 383–420 118- Thomas A.(2000). Spatial and temporal characteristics of potential evapotranspiration trends over China. Int J Climatol. 20(4):381–396. 119- Thornthwaite, C. W. (1948).An approach toward a rational classification of climate. Geogr. Rev. 38, 55–94. 120- Troy T ,C Kipgen and I Pal.(2015).The impact of climate extremes and irrigation on US crop yields, Environ. Res. Lett. 10(5). 121- Ugarković, D., Kelava Ugarković, N., (2013). Changes and trends of climate elements and indices in the region of Mediterranean Croatia. Journal of Central European Agriculture 14: 236- 249. 122- Vergni,L.and Todisco, F., (2011). Spatio-temporal variability of precipitation, temperature and 691 agricultural drought indices in Central Italy. Agricultural and Forest Meteorology, 151: 301– 692 313. 123- Vicente-Serrano SM, McVicar TR, Miralles DG,Yang Y,Burguera MT (2020). Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. Wiley Interdiscip Rev Clim Chang 11.e 632 124- Vicente-Serrano, S. M., C. Azorin- Molina, A. Sanchez-Lorenzo, J. Revuelto, E. Mor_an-Tejeda, J. I. L_opez Moreno, and F. Espejo .(2014).Sensitivity of reference evapotranspiration to changes in meteorological parameters in Spain (1961–2011), Water Resour. Res., 50, 8458–8480 125- Vörösmarty CJ, Federer CA, Schloss AL (1998). Potential evaporation functions compared on U.S. watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling. J Hydrol 207(3–4): 147–169.126- Vörösmarty CJ, Green P, Salisbury J, Lammers RB .(2000). Global water resources: Vulnerability from climate change and population growth. Science. 289(5477): 284–288. 7 127- Wang K, Dickinson RE (2012). A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev Geophys.50:RG2005. 128- Wang Y, Jiang T, Bothe O, Fraedrich K .(2007). Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin. Theor Appl Climatol. 90(1–2):13–23 129- Wang, K., R. E. Dickinson, and S. Liang (2012). Global atmospheric evaporative demand over land from 1973 to 2008. J. Climate, 25, 8353–8361 130- Wang, M.; Yang, Q.; Zheng, J.H.; Liu, Z.H.(2016). Spatial and Temporal Distribution of Water Requirement of Cotton in Xinjiang from 1963 to 2012. Acta Ecologica Sinica 36, 4122–4130. 131- Wang, W.H.; Huang, Y.; Liu, T(2018). Optimized Redistribution of Water Resources in the Kaidu-Kongque River Basin. Arid Zone Res. 5, 1030–1039 132- Wen, Y.; Shang, S.; Yang, J. (2017). Optimization of irrigation scheduling for spring wheat with mulching and limited irrigation water in an arid climate. Agric. Water Manag. 192, 33–44. 133- Wu SH, Yin YH, Zheng D, Yang QY (2006). Moisture conditions and climate trends in China during the period 1971–2000. Int J Climatol 26: 193–206 134- Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., & Donohue, R. J. (2019).Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nature Climate Change. 9(1), 44–48 135- Young, S. S., and R. Harris (2005). Changing patterns of global-scale vegetation photosynthesis, 1982–1999, Int. J. Remote Sens., 26(20), 4537–4563 136- Zanchettin, D., Traverso, P., Tomasino, M. (2008): Po River discharges: A preliminary analysis of a 200-year time series. Climatic Change 89: 411-433. 137- Zhang, Kexin & Pan, Shao-ming & Zhang, Wei & Xu, Yihong & Cao, Liguo & Hao, Yong-pei & Wang, Yun. (2015). Influence of climate change on reference evapotranspiration and aridity index and their temporal-spatial variations in the Yellow River Basin, China, from 1961 to 2012. Quaternary International. 380. 10.1016.
Type
Thesis

2024-01-16
EndNote
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at [email protected]