Quantitatively modeling of tetracycline photodegradation in low molecular weight organic acids under simulated sunlight irradiation
2021
Liu, Fei | Liu, Fang | Qian, Xiao | Zhu, Xianjian | Lou, Yansha | Liu, Xinhui | Cui, Baoshan | Bai, Junhong
As the ubiquitous active components in aquatic environments, low molecular weight organic acids (LMWOAs) have a large influence on the environmental behaviors of contaminants. This research was focused on the effect of different LMWOAs including 11 aliphatic acids and 7 aromatic acids on the photodegradation kinetics of tetracycline (TC), and the development of quantitative structure-activity relationship (QSAR) model. Results showed that TC photodegradation in the presence of LMWOAs fitted pseudo-first-order photolysis kinetics, and the observed photolysis rate constant (kobs) varied from 0.077 to 0.331 h⁻¹. The QSAR model was developed by partial-least-squares (PLS) with using a sequential approach with 25 theoretical molecular descriptors. Four descriptors including ELUMO-EHOMO, ELUMO, CCR and Qmax were found to mechanistically and statistically affect kobs.The high cross validated regression coefficient (Qcum2, 0.898) and high correlation coefficient (R², 0.908) indicated significantly goodness-of-fit and high robustness of the model. The predicted and observed values with high agreement in the defined applicability domain featured accuracy and feasibility of model. This work provided a robust predictive method for estimating the TC photodegradation in the presence of different structures of LMWOAs.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library