Treatment of chlorpyrifos manufacturing wastewater by peroxide promoted-catalytic wet air oxidation, struvite precipitation, and biological aerated biofilter
2019
Chen, Fu | Zeng, Siyan | Ma, Jing | Zhu, Qianlin | Zhang, Shaoliang
Chlorpyrifos manufacturing wastewater (CMW) is characterized by complex composition, high chemical oxygen demand (COD) concentration, and toxicity. An integrated process comprising of peroxide (H₂O₂) promoted-catalytic wet air oxidation (PP-CWAO), struvite precipitation, and biological aerated filters (BAF) was constructed to treat CMW at a starting COD of 34000–35000 mg/L, total phosphorus (TP) of 5550–5620 mg/L, and total organophosphorus (TOP) of 4700–4840 mg/L. Firstly, PP-CWAO was used to decompose high concentrations of organic components and convert concentrated and recalcitrant TOP to inorganic phosphate. Copper citrate and ferrous citrate were used as the catalysts of PP-CWAO. Under the optimized conditions, 100% TOP was converted to inorganic phosphate with 95.6% COD removal. Then, the PP-CWAO effluent was subjected to struvite precipitation process for recovering phosphorus. At a molar ratio of Mg²⁺:NH₄⁺:PO₄³⁻ = 1.1:1.0:1.0, phosphate removal and recovery reached 97.2%. The effluent of struvite precipitation was further treated by the BAF system. Total removals of 99.0%, 95.2%, 97.3%, 100%, and 98.3% were obtained for COD, total suspended solids, TP, TOP, and chroma, respectively. This hybrid process has proved to be an efficient approach for organophosphate pesticide wastewater treatment and phosphorus reclamation.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library