Fate and contaminant transport model-driven probabilistic human health risk assessment of DNAPL-contaminated site
2021
Guleria, Abhay | Chakma, Sumedha
In this study, fate and contaminant transport model-driven human health risk indexes were calculated due to the presence of dense non-aqueous phase liquids (DNAPLs) in the subsurface environment of air force base area in Florida, USA. Source concentration data of DNAPLs was used for the calculation of transport model-driven health risk indexes for the children and adult sub-population via direct oral ingestion and skin dermal contact exposure scenario using 10,000 Monte Carlo type simulations. The highest variation in the probability distribution of transformed DNAPL compound (cis-dichloroethene (cis-DCE) > vinyl chloride (VC)) was observed as compared to parent DNAPL (tetrachloroethene (PCE)) based on the 50-year simulation timespan. Transformed DNAPL compounds (VC, cis-DCE) posed the highest risk to human health for a longer duration (up to 15 years) in comparison to parent DNAPL (PCE), as non-carcinogenic hazard quotient varied from 400 to 1100. Carcinogenic health risks were observed as 3-order of magnitude higher than safe limit (HQSₐfₑ < 10⁻⁶) from 2nd to 5th year timespan and fall in the high-risk zone, indicating the need for a remediation plan for a contaminated site. Variance attribution analysis revealed that concentration, body weight, and exposure duration (contribution percentage – 70 to 95%) were the most important parameters, highlighting the impact of dispersivity and exposure model in the estimation of risk indexes. This approach can help decision-makers when a contaminated site with partial data on hydrogeological properties and with higher uncertainty in model parameters is to be assessed for the formulation of remediation measures.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library