Incorporation of ¹⁵N from ammonium into the N-linked oligosaccharides of an immunoadhesin glycoprotein expressed in Chinese hamster ovary cells
1999
Gawlitzek, Martin | Papac, Damon I. | Sliwkowski, Mary B. | Ryll, Thomas
Elevated ammonium concentrations in the medium of cultivated cells have been shown to increase the intracellular levels of uridine-5′-diphospho-N-acetylglucosamine (UDP-GlcNAc) and uridine-5′-diphospho-N-acetylgalactosamine (UDP-Gal-NAc; Ryll et al., 1994). These sugar nucleotides are substrates for glycosyltransferases in the glycosylation pathway. In our experiments, recombinant Chinese hamster ovary cells producing an immunoadhesin glycoprotein (GP1-IgG) have been cultivated under controlled cell culture conditions in the presence of different ammonium concentrations. ¹⁵N-Labeled ammonium chloride (¹⁵NH₄Cl) was added exogenously to the cell culture media to determine if ammonium was incorporated into UDP-GlcNAc and cytidine-5′-monophospho-N-acetylneuraminic acid (CMP-NANA) pools, and subsequently incorporated into GP1-IgG as N-linked glycans. The intracellular pools of UDP-activated hexosamines (UDP-GNAc) were followed during the time course of the experiment. To assess the extent of ¹⁵NH₄+ incorporation into the glycans of GP1-IgG, the glycoprotein was first purified to homogeneity by protein A chromatography. Enzymatically released N-glycans were then analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. N-Glycans synthesized in the presence of ¹⁵NH₄Cl revealed an N-glycan-dependent increase in mass-to-charge of 2.5-4.8 Da. These results indicate that 60-70% of the total nitrogen containing monosaccharides had incorporated ¹⁵N. Presumably, ¹⁵NH₄+ was incorporated into GlcNAc and N-acetylneuraminic acid as proposed earlier (Ryll et al., 1994). This might be a universal and previously not described reaction in mammalian cells when exposed to nonphysiological but in cell culture commonly found concentrations of ammonium. The data presented here are of significance for glycoprotein production in mammalian cell culture, since it has been shown previously that elevated levels of UDP-activated hexosamines affect N-glycan characteristics such as branching and degree of amino sugar incorporation. In addition, our results demonstrate that isotope labeling in combination with MALDI-TOF-MS can be used as an alternate tool to radioactive labeling of sugar substrates in metabolic studies.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library