Differential inhibition of tonoplast H+-ATPase activities by fluorescamine and its derivatives
1990
Tu, S.I. | Brauer, D. | Nungesser, E.
Corn (Zea mays L.) root tonoplast vesicles were treated with the primary-amine specific reagent, fluorescamine (FL). Modification by FL caused a differential inhibition to the coupled activities of tonoplast H+-ATPase. Within the range of 0 to 5 micromoles of FL per milligram of protein, the proton pumping rate was significantly reduced but ATP hydrolysis was only slightly affected. Yet, the membrane H+ leakage during the pumping stage increased only slightly. FL treatment resulted in (a) a decrease in amine containing phospholipids and (b) an insertion of multiple H-bonding moieties into the membrane. To test which of these two possible effects were responsible for inhibition, FL derivatives of benzylamine, butylamine, and phenylalanine were synthesized. It was found that the acyclic derivatives with high H-bonding potential at concentrations of 10 micromolar inhibited proton pumping by 50% without a significant effect on ATP hydrolysis. Cyclic derivatives were largely ineffectual. Proton leakage during pumping was not affected by these acyclic modifiers. Membrane fluidity, as measured by the polarization of diphenyl hexatriene, decreased upon treatment with either FL or its derivatives. The results suggest that the proton pumping is indirectly linked to ATP hydrolysis in the tonoplast vesicles, and the link between these processes is apparently weakened by the presence of acyclic fluorescamine derivatives in the membrane.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library