Release and fate of nanoparticulate TiO2 UV filters from sunscreen: Effects of particle coating and formulation type
2021
Slomberg, Danielle L. | Catalano, Riccardo | Bartolomei, Vincent | Labille, Jérôme
Nanoparticulate mineral UV filters, such as titanium dioxide (TiO₂) nanocomposites, are being increasingly used in sunscreens as an alternative to organic UV filters. However, there is still a lack of understanding regarding their fate and behavior in aquatic environments and potential environmental impacts after being released from a bather’s skin during recreational activities. In this work, we assessed the release, fate, and transformation of two commercial nanocomposite TiO₂ UV filters, one hydrophobic and one hydrophilic, in ultrapure water and simulated fresh- and seawater. The hydrophobic TiO₂ nanocomposite, T-SA, was coated with a primary Al₂O₃ photopassivation layer and a secondary stearic acid layer, while the hydrophilic TiO₂ nanocomposite, T-SiO₂, was coated with a single SiO₂ photopassivation layer. The influence of the sunscreen formulation was examined by dispersing the TiO₂ nanocomposites in their typical continuous phase (i.e., oil for T-SA and water for T-SiO₂) before introduction into the aqueous system. After 48 h of aqueous aging and 48 h of settling, 88–99% of the hydrophobic T-SA remained floating on top of the water column in all aqueous systems. On the other hand, 100% of the hydrophilic T-SiO₂ settled out of the water column in the fresh- and seawaters. With respect to the photopassivation coatings, no loss of the T-SA Al₂O₃ layer was detected after aqueous aging, but 99–100% dissolution of the SiO₂ layer on the T-SiO₂ nanocomposite was observed after 48 h in the fresh- and seawaters. This dissolution left behind T-SiO₂ by-products exhibiting a photocatalytic activity similar to that of bare rutile TiO₂. Overall, the results demonstrated that the TiO₂ surface coating and sunscreen formulation type drive environmental behavior and fate and that loss of the passivation layer can result in potentially harmful, photoactive by-products. These insights will help guide regulations and assist manufacturers in developing more environmentally safe sunscreens.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library