Performance of an electrocoagulation-flotation system in the treatment of domestic wastewater for urban reuse
2022
Bracher, Gustavo Holz | Carissimi, Elvis | Wolff, Delmira Beatriz | Glusczak, Andressa Gabriela | Graepin, Cristiane
Domestic wastewater is an important alternative source of water in the face of a growing discrepancy between water availability and demand. The use of techniques that enable the urban reuse of treated sewage is essential to make cities more sustainable and resilient to water scarcity. The main goal of this study was to evaluate the performance of an electrocoagulation-flotation system in the treatment of domestic wastewater for urban reuse. The study was performed using raw domestic wastewater samples. The electrocoagulation-flotation system was a cylindrical reactor with aluminum electrodes. The treatment conditions involved agitation at 262.5 rpm, electrical current of 1.65 A, electrolysis time of 25 min, an initial pH of 6, and inter-electrode distance of 1 cm. Overall, the electrocoagulation-flotation system was highly efficient for removal of apparent color (97.9%), chemical oxygen demand (82.9%), turbidity (95.8%), and orthophosphate phosphorous (> 98.2%). The electrocoagulation-flotation system had a consumption of electrical energy ranging from 9.5 to 13.3 kWh m⁻³, electrode mass from 294.7 to 557.0 g m⁻³, and hydrochloric acid from 4.3 to 6.6 L m⁻³. Sludge production in the system ranged from 1,125.7 to 1,835.7 g m⁻³. Treated wastewater had a satisfactory quality for several urban reuse activities. The electrocoagulation-flotation system showed potential to be used for domestic wastewater treatment for urban reuse purposes.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library