In situ remediation of 2,4-dicholrophenoxyacetic acid herbicide using amine-functionalized imidazole coordination complexes
2021
Mansab, Saira | Rafique, Uzaira
Demand of clean water is always a major concern due to continuous use of toxic pesticides and herbicides to overcome food scarcity. In Asian countries, wide use of ionizable 2,4-D herbicide has worsen problem due to its less binding ability with soil and can easily contaminate drinking water that causes potential risks to humans and environment. The present research focused on synthesis of amino-factionalized coordination complexes using imidazole-based amino benzoic acid ligands for remediation of acidic 2,4-D herbicide. Coordination complexes characterized with FTIR, ¹H-NMR, elemental analysis, thermogravimetric analysis, powder XRD, and BET revealed successful incorporation of functionalized groups with high thermal stability and surface area that make them suitable for adsorption experiments. Batch adsorption experiments conducted at different temperature conditions depicted the spontaneous physisorption process (− ∆G) having endothermic nature (∆H, ∆S). The removal efficiency of the amino-functionalized coordination complex is found to be higher (73%) compared to non-functionalized (35%) and acetic anhydride-functionalized coordination complex (42%). Kinetic studies supported pseudo 2nd-order kinetics with three phases of adsorption depicted by intra-particle diffusion model. Amino-functionalized complexes favored Langmuir isotherm while Freundlich isotherm is best fitted for non-functionalized complexes. The synthesized adsorbents were also proven to be effective for removal of herbicide from irrigated wastewater with average percent removal of 56% for amino functionalized, acetic anhydride functionalized (23%), and non-functionalized (20%).
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library