In vitro selection of calli resistant to a triazole cytochrome-P-450-obtusifoliol-14-demethylase inhibitor from protoplasts of Nicotiana tabacum L. cv. Xanthi
1990
Maillot-Vernier, P. | Schaller, H. | Benveniste, P. | Belliard, G.
The selection of biochemical mutants has been undertaken in order to elucidate regulatory and functional aspects of sterol biosynthesis in plants. 2-(4-Chlorophenyl)-3-phenyl-1-(1H-1,2,4-triazol-1-yl)-2,3-oxidopropane (LAB170250F), an experimental fungicide of the triazole family, was used as a selective agent. Indeed, this compound is a strong inhibitor of the cytochrome-P-450-obtusifoliol-14-demethylase in sterol biosynthesis. The selection strategy consisted of screening large populations of microcalli derived from ultraviolet-mutagenized protoplasts of Nicotiana tabacum L. cv Xanthi for resistance to a lethal concentration LAB170250F. The best selective conditions were first determined, i.e. strength of the selection pressure as well as the time and duration of its application in the developmental process from protoplast to whole plant. Selection experiments resulted in the recovery of 40 resistant calli. These calli were divided into three classes according to the modification of their sterol content in response to LAB170250F. Some of these calli might be impaired in sterol biosynthesis, but more have a sterol profile identical to that of the control calli. This suggests that the toxic properties of LAB170250F are due to the parallel inhibition of sterol biosynthesis and of at least one additional unidentified target in the plant cell.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library