The effect of nanosilica incorporation on the mechanical properties of concrete exposed to elevated temperature: a review
2022
Nasser, Ibrahim Mohammed | Ibrahim, Mohd Haziman Wan | Zuki, Sharifah Salwa Mohd | Algaifi, Hassan Amer | Alshalif, Abdullah Faisal
Exposing concrete to high temperatures leads to harmful effects in its mechanical and microstructural properties, and ultimately to total failure. In this sense, various types of waste materials are exploited not only to tackle serious environmental issues but also to enhance the thermal stability of concrete exposed to elevated temperatures. Furthermore, nanomaterials have been incorporated in concrete as admixtures to reduce the thermal degradation of concrete due to exposure to high temperatures. In the present study, the effects of nanosilica (NS) incorporation on the properties of concrete subjected to elevated temperature are discussed in several sequential sections. The process mechanism of concrete deterioration due to fire exposure and the important factors that could affect the performance of concrete under fire were evaluated. Moreover, brief highlights on the effect of elevated temperature on concrete containing waste materials are included in this review paper. Reviews and summaries of the available and updated literature regarding concrete containing NS are considered. According to the findings of the studies under review, the addition of nanosilica to concrete contributed in reduced strength loss, minimized internal porosity, and enhanced matrix compactness in concrete.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library