Mechanism of accelerating soot oxidation by NO2 from diesel engine exhaust
2020
Li, Zehong | Zhang, Wei | Chen, Zhaohui | Jiang, Qianyu
NO₂ oxidation of soot exhausted from engines is more efficient than O₂ under low-temperature conditions, and is crucial for diesel particulate filter to control soot pollution. To explore the principle behind accelerating soot oxidation by NO₂, this paper uses density functional theory to reveal soot oxidation process by NO₂. This study contributes to understanding rules of soot oxidation by NO₂ and perfecting soot oxidation models to develop soot emission control technologies. Results show that NO₂ oxidation of pyrene radical involves three steps. Firstly, NO₂ attacks the C∗ atom to form –C (NO₂) with reaction energy of 306.3 kJ/mol, which decomposes to produce a –C (O) compound. Secondly, another NO₂ molecule climbs over an energy barrier of 8.8 kJ/mol, and changes into a –C (ONO₂) intermediate on –C (O). Finally, the N or O atom of NO₂ attacks –C (O) for a second time to help open aromatic ring for releasing CO or CO₂. Further decomposition of –C (NO₂) and –C (ONO₂) requires activation energies of 81.6 kJ/mol, 75.7 kJ/mol, and 53.5 kJ/mol, respectively, on preferential pathways. Calculations prove that attacks of O atom from NO₂ on C∗ help open the aromatic ring more efficiently than N atom.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library