A novel electrochemical method to detect theophylline utilizing silver ions captured within abasic site-incorporated duplex DNA
2015
Ahn, Jun Ki | Park, Ki Soo | Won, Byoung Yeon | Park, Hyun Gyu
We herein describe a novel and label-free electrochemical system to detect theophylline. The system was constructed by immobilizing duplex DNA containing an abasic site opposite cytosine on the gold electrode surface. In the absence of theophylline in a sample, silver ions freely bind to the empty abasic site in the duplex DNA leading to the highly elevated electrochemical signal by the redox reaction of silver ions. On the other hand, when theophylline is present, it binds to the abasic site by pseudo base pairing with the opposite cytosine nucleobase, which consequently prevents silver ions from binding to the abasic site. As a result, redox reaction of silver ions would be greatly reduced resulting in the accordingly decreased electrochemical signal. By employing this electrochemical strategy, theophylline was reliably detected at a concentration as low as 3.2μM with the high selectivity over structurally similar substances such as caffeine and theobromine. Finally, the diagnostic capability of this method was also successfully verified by reliably detecting theophylline present in a real human serum sample with an excellent recovery ratio within 100±6%.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library