Interfaces Between Bacterial and Eukaryotic "Neuroecology"
2011
Steinberg, Peter D. | Rice, Scott A. | Campbell, Alexandra H. | McDougald, Diane | Harder, Tilmann
The sensory capacity of bacteria and macroalgae (seaweeds) is limited with respect to many modalities (visual, auditory) common in "higher" organisms such as animals. Thus, we expect that other modalities, such as chemical signaling and sensing, would play particularly important roles in their sensory ecology. Here, we discuss two examples of chemical signaling in bacteria and seaweeds: (1) the role of chemical defenses and quorum-sensing (QS) regulatory systems in bacterial colonization and infection of the red alga Delisea pulchra and their ecological consequences, and (2) the regulation of dispersal and differentiation by nitric oxide (NO) in bacterial biofilms. Consistent with the goals of neuroecology, in both cases, we investigate the links between specific signal-mediated molecular mechanisms, and ecological outcomes, for populations or assemblages of bacteria or seaweeds. We conclude by suggesting that because of the fundamental role played by chemical signaling in bacteria, bacterial systems, either by themselves or in interactions with other organisms, have much to offer for understanding general issues in neuroecology. Thus, further integration of microbiology with the biology of eukaryotes would seem warranted and is likely to prove illuminating.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library