β-carotene and retinol reduce benzo[a]pyrene-induced mutagenicity and oxidative stress via transcriptional modulation of xenobiotic metabolizing enzymes in human HepG2 cell line
2018
Darwish, WagehSobhy | Ikenaka, Yoshinori | Nakayama, Shouta | Mizukawa, Hazuki | Thompson, LesaA | Ishizuka, Mayumi
Benzo[a]pyrene (B[a]P) is one of the polycyclic aromatic hydrocarbons which is formed due to smoking of foods, incomplete combustion of woods, vehicle exhausts, and cigarettes smokes. B[a]P gets entry into human and animal bodies mainly through their diets. Metabolic activation of B[a]P is required to induce mutagenesis and carcinogenesis in animal and human studies. Carotenoids and retinoids are phytochemicals that if ingested have multiple physiological interferences in the human and animal bodies. In this study, we firstly investigated the protective effects of β-carotene, β-apo-8-carotenal, retinol, and retinoic acid against B[a]P-induced mutagenicity and oxidative stress in human HepG2 cells. Secondly, we tested the hypothesis of modulating xenobiotic metabolizing enzymes (XMEs) by carotenoids and retinoids as a possible mechanism of protection by these micronutrients against B[a]P adverse effects. The obtained results declared that β-carotene and retinol significantly reduced B[a]P-induced mutagenicity and oxidative stress. Tested carotenoids and retinoids reduced B[a]P-induced phase I XMEs and induced B[a]P reduced phase II and III XMEs. Thus, the protective effects of these micronutrients are probably due to their ability of induction of phase II and III enzymes and interference with the induction of phase I enzymes by the promutagen, B[a]P. It is highly recommended to consume foods rich in these micronutrients in the areas of high PAH pollution.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library