Modeling the fate of p,p′-DDT in water and sediment of two typical estuarine bays in South China: Importance of fishing vessels' inputs
2016
Fang, Shu-Ming | Zhang, Xianming | Bao, Lian-Jun | Zeng, E. Y. (Eddy Y.)
Antifouling paint applied to fishing vessels is the primary source of dichloro-diphenyl-trichloroethane (DDT) to the coastal marine environments of China. With the aim to provide science-based support of potential regulations on DDT use in antifouling paint, we utilized a fugacity-based model to evaluate the fate and impact of p,p′-DDT, the dominant component of DDT mixture, in Daya Bay and Hailing Bay, two typical estuarine bays in South China. The emissions of p,p′-DDT from fishing vessels to the aquatic environments of Hailing Bay and Daya Bay were estimated as 9.3 and 7.7 kg yr−1, respectively. Uncertainty analysis indicated that the temporal variability of p,p′-DDT was well described by the model if fishing vessels were considered as the only direct source, i.e., fishing vessels should be the dominant source of p,p′-DDT in coastal bay areas of China. Estimated hazard quotients indicated that sediment in Hailing Bay posed high risk to the aquatic system, and it would take at least 21 years to reduce the hazards to a safe level. Moreover, p,p′-DDT tends to migrate from water to sediment in the entire Hailing Bay and Daya Bay. On the other hand, our previous research indicated that p,p′-DDT was more likely to migrate from sediment to water in the maricultured zones located in shallow waters of these two bays, where fishing vessels frequently remain. These findings suggest that relocating mariculture zones to deeper waters would reduce the likelihood of farmed fish contamination by p,p′-DDT.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library