Quantitative identification of anthropogenic trace metal sources in surface river sediments from a hilly agricultural watershed, East China
2019
Jiao, Wei | Niu, Yuan | Niu, Yong | Li, Bao | Zhao, Min
Quantitative identification of anthropogenic trace metal sources in surface river sediments is vital for watershed pollution control and environmental safety. In this study, we developed a reliable approach by integrating enrichment factor (EF), multiple linear regression of absolute principal component scores (MLR-APCS), and Pb stable isotopes, and applied it to a typical hilly agricultural watershed in Eastern China. Results showed that trace metals have accumulated in the river sediments during long-term agricultural development, with special concern of Cu, Ni, Pb, and Cr that may pose adverse biological effects. Among them, Pb was the most anthropogenically impacted trace metal due to its high EF value, but its excessive concentration still did not exceed background concentration. Based on the excessive trace metal concentrations, atmospheric deposition, livestock manure, and chemical fertilizer were identified as the three major anthropogenic pollution sources, and their respective contributions were further estimated by using MLR-APCS model. Together with natural contributions, atmospheric deposition contributed on average 35.3%, 43.1%, and 30.4% of total Ni, Pb, and Cr concentrations in the sediments, respectively. Similarly, livestock manure contributed 41.0% of total Cu and 40.6% of total Zn concentrations, while chemical fertilizer was responsible for 44.3% of total Cd concentration. For Pb, the source contribution of atmospheric deposition to sediment pollution was also quantitatively assessed by isotopic analysis, which was generally close to the value of 43.1% and therefore verified the EF and MLR-APCS results.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library