CYP710A genes encoding sterol C22-desaturase in Physcomitrella patens as molecular evidence for the evolutionary conservation of a sterol biosynthetic pathway in plants
2009
Morikawa, Tomomi | Saga, Hirohisa | Hashizume, Hiroko | Ohta, Daisaku
We have characterized cytochromes P450, CYP710A13, and CYP710A14, as the sterol C22-desaturase in the moss Physcomitrella patens. GC-MS analyses demonstrated that P. patens accumulated stigmasterol as the major sterol (56-60% of total sterol) and sitosterol to a lesser extent (8-12%); this sterol profile contrasts with those in higher plants accumulating stigmasterol as a minor component. Recombinant CYP710A13 and CYP710A14 proteins prepared using a baculovirus/insect cell system exhibited the C22-desaturase activity with β-sitosterol to produce stigmasterol, while campesterol and 24-epi-campesterol were not accepted as the substrates. The K m values for β-sitosterol of CYP710A13 (1.0 ± 0.043 μM) and CYP710A14 (2.1 ± 0.17 μM) were at comparable levels of those reported with higher plant CYP710A proteins. In Arabidopsis T87 cells over-expressing CYP710A14, stigmasterol contents reached a level 20- to 72-fold higher than those in the basal level of T87 cells, confirming the C22-desaturase activity of this P450 enzyme. The occurrence of the end-products together with the enzymes involved in the last step of the pathway substantiated the presence of an entire sterol biosynthetic pathway in P. patens, providing evidence for the conservation of the sterol biosynthetic pathway through the evolutionary process of land plants.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library