AGRIS - International System for Agricultural Science and Technology

Identifying Prominent Explanatory Variables for Water Demand Prediction Using Artificial Neural Networks: A Case Study of Bangkok

2011

Babel, Mukand Singh | Shinde, Victor R


Bibliographic information
Water resources management
Volume 25 Issue 6 Pagination 1653 - 1676 ISSN 0920-4741
Publisher
Pergamon
Other Subjects
Bangkok; Water utilities; Water demand prediction; Sensitivity analysis; Socioeconomic factors; Explanatory variables; Prediction accuracy; Meteorological parameters
Language
English
Type
Text; Journal Article

2024-02-27
MODS
Data Provider
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at agris@fao.org