FAO AGRIS - International System for Agricultural Science and Technology

Deep learning and computer vision for assessing the number of actual berries in commercial vineyards

Palacios, Fernando | Melo-Pinto, Pedro | Diago, Maria P. | Tardaguila, Javier


Bibliographic information
Biosystems engineering
Volume 218 Pagination 175 - 188 ISSN 1537-5110
Publisher
Blackwell Science
Other Subjects
Precision viticulture; Vines; Non-invasive sensing technologies; Grapevine yield components; Segnet architecture
Language
English
License
//data.crossref.org/schemas/AccessIndicators.xsd:license_ref>http://purl.org/eprint/accessRights/OpenAccess | //data.crossref.org/schemas/AccessIndicators.xsd:program>//data.crossref.org/schemas/AccessIndicators.xsd:license_ref> | //data.crossref.org/schemas/AccessIndicators.xsd:program>
Type
Text; Journal Article

2024-02-28
MODS
Data Provider
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at [email protected]