Benzoylecgonine exposure induced oxidative stress and altered swimming behavior and reproduction in Daphnia magna
2018
Parolini, Marco | De Felice, Beatrice | Ferrario, Claudia | Salgueiro-González, Noelia | Castiglioni, Sara | Finizio, Antonio | Tremolada, Paolo
Several monitoring studies have shown that benzoylecgonine (BE) is the main illicit drug residue commonly measured in the aquatic system worldwide. Few studies have investigated the potential toxicity of this molecule towards invertebrate and vertebrate aquatic non-target organisms focusing on effects at low levels of the biological organization, but no one has assessed the consequences at higher ones. Thus, the present study was aimed at investigating the toxicity of a 48-h exposure to two concentrations of BE, similar to those found in aquatic ecosystems (0.5 μg/L and 1.0 μg/L), on the cladoceran Daphnia magna at different levels of the ecological hierarchy. We relied on a multi-level approach focusing on the effects at biochemical/biomolecular (biomarkers), individual (swimming activity) and population (reproduction) levels. We measured the amount of reactive oxygen species and of the activity of antioxidant (SOD, CAT, and GPx) and detoxifying (GST) enzymes to assess if BE exposure can alter the oxidative status of D. magna specimens, while the lipid peroxidation (TBARS) was measured as a marker of oxidative damage. Moreover, we also measured the acetylcholinesterase (AChE) activity because it is strictly related to behavioral changes in aquatic organisms. Changes in swimming behavior were investigated by a video tracking analysis, while the consequences on reproduction were assessed by a chronic toxicity test. Our results showed that BE concentrations similar to those found in aquatic ecosystems induced oxidative stress and inhibited AChE activity, affecting swimming behavior and the reproduction of Daphnia magna individuals.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library