Low-carbon electricity generation–based dynamic equilibrium strategy for carbon dioxide emissions reduction in the coal-fired power enterprise
2019
Xu, Jiuping | Feng, Qing | Lv, Chengwei | Huang, Qian
Climate change is already resulting in extreme devastation in the earth, with carbon dioxide emissions produced by coal-fired power plants being the largest contributor. Therefore, integrated coal purchasing, blending, and distribution strategies are playing a more important role in large-scale coal-fired power enterprises due to the need to reduce carbon dioxide emissions and operational costs. In this study, a dynamic equilibrium strategy for integrated coal purchasing, blending, and distribution under an uncertain environment is proposed to reduce carbon dioxide emissions in large-scale coal-fired powered enterprises; the practicality and efficiency of which are verified using a real-world case. Sensitivity analyses under different carbon dioxide emissions levels and satisfactory degrees were also conducted to give insights into the conflict between economic development and environmental protection for large-scale coal-fired power enterprises, and balance short-term and long-term production plans. The results indicated that the proposed method was able to achieve economic-environmental coordination and sustainable development. Compared to previous studies, the developed model was found to be able to reduce carbon emissions by about 30% compared with the maximum carbon emissions and improve carbon emissions reduction performance to assist in mitigating climate change.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library